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Exercise 1

Let f : R3 Ñ R` be a regular enough function, decaying sufficiently fast at infinity. Prove
that the following statements are equivalent:

(i)

ż

R3

Q pf, fq log fdv “ 0;

(ii) log f is a collision invariant;

(iii) f is a Maxwellian distribution, i.e. there exist ρ P R, θ ą 0 and u P R3 such that

f pvq “ ρ

p2πθq
3
2
e´

|v´u|2

2θ for all v P R3;

(iv) Q pf, fq “ 0.

Proof. First of all notice that piiq ðñ piiiq. From the characterization we gave last time
of a collision invariant we have that log f pvq “ a |v| ` b ¨ v ` c with a, c P R, b P R3. This
implies that

f pvq “ ea|v|
2
`b¨v`c. (1)

Given that f is decaying at infinity we get a “ ´ |a|. Given that we can now write

a |v|2 ` b ¨ v ` c “ ´ |a| |v|2 ` b ¨ v ` c “ ´ |a|

ˆ

v ´
1

2 |a|
b

˙2

`
|b|2

4 |a|
` c. (2)

If we define θ :“ 1
2|a| , u :“ 1

2|a|b and ρ :“
´

π
|a|

¯
3
2
e
|b|2

|a|
`c

we can clearly see that f is a

Maxwellian distribution. The viceversa comes easily from a similar argument.

We now prove that piq ñ piiq ñ pivq ñ piq to conclude.

To prove piq ñ piiq recall that we saw in class that we can rewrite Q pf, fq as
ż

R3

Q pf, fq log fdv “ (3)

“ ´
1

4

ż

R3

ż

R3

ż

S2

`

f 1f 1˚ ´ ff˚
˘

log

ˆ

f 1f 1˚
ff˚

˙

B pv ´ v˚, ωq dω dv dv˚ (4)

“ ´
1

4

ż

R3

ż

R3

ż

S2
ff˚

ˆ

f 1f 1˚
ff˚

´ 1

˙

log

ˆ

f 1f 1˚
ff˚

˙

B pv ´ v˚, ωq dω dv dv˚. (5)

Given that ff˚B pv ´ v˚, ωq ě 0 and that the function pλ´ 1q log pλq ě 0, Q pf, fq “ 0

implies that ff˚

´

f 1f 1˚
ff˚

´ 1
¯

log
´

f 1f 1˚
ff˚

¯

B pv ´ v˚, ωq “ 0. Given that ff˚B pv ´ v˚, ωq ą 0
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for any ω ‰ 0 we get that
f 1f 1˚
ff˚

“ 1 almost everywhere. This implies that log f is collision
invariant and therefore piiq.

Using the same expression for Q pf, fq, if log f is collision invariant we have
f 1f 1˚
ff˚

“ 1 and
therefore Q pf, fq “ 0. This proves piiq ñ pivq.

Finally pivq ñ piq is trivial, which concludes the proof of the exercise.

Exercise 2

Let v, v˚ P R3, and ω P S2. In the lecture we defined the post-collisional velocities pv1, v1˚q
associated to the pair of pre-collisional velocities pv, v˚q with the angular parameter ω as:

"

v1 “ v ´ pv ´ v˚q ¨ ω ω,
v1˚ “ v˚ ` pv ´ v˚q ¨ ω ω.

(6)

We denote as pv1, v1˚q pωq the pair of post-collisional velocities defined by (6). In the liter-
ature, one may find another parametrization for the post-collisional velocities, called the
σ-representation, defined for any σ P S2 as

#

v2 “ v`v˚
2 `

|v´v˚|
2 σ,

v2˚ “
v`v˚

2 ´
|v´v˚|

2 σ.
(7)

We denote as pv2, v2˚q pσq the pair of post-collisional velocities defined by (7).

(i) Prove that the two parametrizations are equivalent, i.e. that for any ω P S2, there
exists a unique parameter σ P S2 such that pv1, v1˚q pωq “ pv

2, v2˚q pσq.

Prove also that for any σ P S2 there exists a parameter ω such that pv1, v1˚q pωq “
pv2, v2˚q pσq. Is this choice of ω unique? If not, how many possibilities are there for
ω for any given σ?

(ii) Represent on a picture, for a given pair of pre-collisional velocities pv, v˚q P R6,
v ‰ v˚, and a given angular parameter ω P S2, the associated pair of post-collisional
velocities pv1, v1˚q pωq. Represent also the vector σ associated to ω.

(iii) We have seen in the lecture that the collision kernel for the hard sphere model is
given by |pv ´ v˚q ¨ ω|, that is the collision term of the Boltzmann equation writes:

Q pf, fq “

ż

R3

ż

S2
|pv ´ v˚q ¨ ω|

`

f 1f 1˚ ´ ff˚
˘

dω dv˚. (8)

Prove that in the σ-representation the hard sphere collision kernel is given by
|v ´ v˚|, i.e.:

Q pf, fq “

ż

R3

ż

S2

|v ´ v˚|

2

`

f2f2˚ ´ ff˚
˘

dσ dv˚, (9)

(where f2 “ f pv2q and f2˚ “ f pv2˚q).
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Proof. We first give some general properties of (6) and (7). Suppose first that we have
pv1, v1˚q pωq “ pv1, v1˚q pω

1q for all v, v˚ P R3. From the fact that v1 pωq “ v1 pω1q we get
immediately that pv ´ v˚q ¨ ω ω “ pv ´ v˚q ¨ ω

1 ω1. This implies first that ω and ω1 are
colinear, and subsequently that are equal up to a sign. Viceversa, the ω-parametrizations
associated to the vectors ω,´ω P S2 coincide, i.e. pv1, v1˚q p´ωq “ pv1, v1˚q pωq. Finally,

given that ω “
v1˚´v˚

|v1˚´v˚|
, ω can always be identified up to a sign, given the transformation.

Suppose now that pv2, v2˚q pσq “ pv
2, v2˚q pσ

1q for all v, v˚ P R3. From the fact that v2 pσq´

v2˚ pσq “ v2 pσ1q ´ v2˚ pσ
1q we get that σ “ σ1. Moreover σ “

v2´v2˚
|v´v˚|

, therefore given the
transformation we can always uniquely identify σ.

We get now to point (i). Let ω P S2 be fixed. Then from the properties of above the σ
associated to the transformation that sends v, v˚ in v1, v1˚ identifies σ uniquely. On the
other hand to each σ we have two corresponding values of ω identified, equal in direction
but opposite in sign.

Regarding point (iii), denote as v1 pω, v, v˚q and v1˚ pω, v, v˚q the vectors defined through
(6), where we made explicit the dependence on v and v˚. First of all we get that

v1
`

ω, v1 pω, v, v˚q , v
1
˚ pω, v, v˚q

˘

“ v1 pω, v, v˚q ´
`

v1 pω, v, v˚q ´ v
1
˚ pω, v, v˚q

˘

¨ ω ω (10)

“ v ´ pv ´ v˚q ¨ ω ω ´ pv ´ v˚ ´ 2 pv ´ v˚q ¨ ω ωq ¨ ω ω “ v, (11)

v1˚
`

ω, v1 pω, v, v˚q , v
1
˚ pω, v, v˚q

˘

“ v1˚ pω, v, v˚q `
`

v1 pω, v, v˚q ´ v
1
˚ pω, v, v˚q

˘

¨ ω ω (12)

“ v˚ ` pv ´ v˚q ¨ ω ω ` pv ´ v˚ ´ 2 pv ´ v˚q ¨ ω ωq ¨ ω ω “ v˚. (13)

Given that the change of variable associated to the transformation v1 “ v1 pω, v, v˚q,
v1˚ “ v1˚ pω, v, v˚q is of the form dv1dv1˚ “ dvdv˚

As a consequence we can rewrite Q pf, fq as

Q pf, fq “

ż

R3

ż

S2
|pv ´ v˚q ¨ ω|

`

f 1f 1˚ ´ ff˚
˘

dω dv˚ (14)

We now want to perform the change of variables σ Ñ ω. Indeed, imposing that v1 pω, v, v˚q “
v2 pσ, v, v˚q, we can easily deduce that

σ “ ´
v ´ v˚
|v ´ v˚|

` 2
v ´ v˚
|v ´ v˚|

¨ ω (15)

Recall now that for a generic function f P L1
`

S2
˘

, the integral is defined in such a way
that for any bijective map ξ P C1

`

U ;S2
˘

with U Ď R2 (a parametrization), we get

ż

S2
f pσq dσ “

ż

U
f pξ pxqq Jξ pxq dx, (16)

with

Jξ pxq :“

c

det
”

∇xξ pxq p∇xξ pxqq
T
ı

(17)

We consider now the parametrization given by the composition of the change of variables
ω Ñ σ and the parametrization give in polar coordinates. In other words, with a little
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abuse of notation we define

σ :
 

ω P S2| ω3 ą 0
(

ÝÑ S2

ω ÞÝÑ ´V ` 2V ¨ ω ω,
ω : r´π, πs ˆ

“

0, π2
‰

ÝÑ
 

ω P S2| ω3 ą 0
(

pϕ, θq ÞÝÑ pcos θ cos pϕq , cos θ sin pϕq , sin θq ,

(18)

with V P S2.

For reason that will become clear later, we introduce the vectors er pϕ, θq, eθ pϕ, θq and
eϕ pϕq defined as

er pϕ, θq :“

¨

˝

cos θ cos pϕq
cos θ sin pϕq

sin θ

˛

‚, (19)

eθ pϕ, θq :“ Bθ er pϕ, θq “

¨

˝

´ sin θ cos pϕq
´ sin θ sin pϕq

cos θ

˛

‚, (20)

eϕ pϕq :“
1

cos θ
Bϕer pϕ, θq “

¨

˝

´ sin pϕq
cos pϕq

0

˛

‚. (21)

Given that

|er pϕ, θq| “ |eθ pϕ, θq| “ |eϕ pϕq| “ 1, (22)

er pϕ, θq ¨ eθ pϕ, θq “ er pϕ, θq ¨ eϕ pϕq “ eθ pϕ, θq ¨ eϕ pϕq “ 0, (23)

the set ter pϕ, θq , eθ pϕ, θq , eϕ pϕqu is a basis for R3. Moreover, by definition we have that
ω pϕ, θq “ er pϕ, θq.

We then calculate the Jacobian Jσ˝ω as

Jσ˝ω pϕ, θq “

c

det
”

∇ϕ,θ pσ ˝ ω pϕ, θqq p∇ϕ,θ pσ ˝ ω pϕ, θqqq
T
ı

(24)

“

c

det
”

p∇ϕ,θωq pϕ, θq p∇ωσq pω pϕ, θqq rp∇ωσq pω pϕ, θqqs
T
rp∇ϕ,θωq pϕ, θqs

T
ı

.

(25)

It is easy to calculate the matrices p∇ϕ,θωq pϕ, θq and p∇ωσq pωq as

p∇ϕ,θωq pϕ, θq “

˜

cos θ eϕ pϕq
T

eϕ pϕ, θq
T

¸

, (26)

p∇ωσq pωq “ 2|V yxω| ` 2V ¨ ω id, (27)

where p|V yxω|qj,k :“ Vjωk (and in particular |V yxω|v “ ω ¨ v V for any v P R3). As a

consequence for any ω P
 

ω P S2| ω3 ą 0
(

we get

p∇ωσq pωq rp∇ωσq pωqs
T
“ 4 p|V yxω| ` V ¨ ω idq p|ωyxV | ` V ¨ ω idq (28)

“ 4
”

|V yxV | ` V ¨ ω|V yxω| ` V ¨ ω|ωyxV | ` pV ¨ ωq2 id
ı

. (29)
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Define now T pϕ, θq “ p∇ωσq pω pϕ, θqq rp∇ωσq pω pϕ, θqqs
T ; as a consequence we get

p∇ϕ,θωq pϕ, θq p∇ωσq pω pϕ, θqq rp∇ωσq pω pϕ, θqqs
T
rp∇ϕ,θωq pϕ, θqs

T
“ (30)

“

˜

cos θ eϕ pϕq
T

eϕ pϕ, θq
T

¸

T pϕ, θq pcos θ eϕ pϕq , eϕ pϕ, θqq (31)

“

ˆ

pcos θq2 eϕ pϕq ¨ T pϕ, θq eϕ pϕq cos θ eϕ pϕq ¨ T pϕ, θq eθ pϕ, θq
cos θ eθ pϕ, θq ¨ T pϕ, θq eϕ pϕq eθ pϕ, θq ¨ T pϕ, θq eθ pϕ, θq

˙

. (32)

Given that ω pϕ, θq “ er pϕ, θq and from the fact that ter pϕ, θq , eθ pϕ, θq , eϕ pϕqu is a basis
we have that for any v, w P spanR teθ pϕ, θq , eϕ pϕqu

v ¨ |V yxω pϕ, θq |w “ w ¨ |V yxω pϕ, θq |v “ 0. (33)

We can finally get

eϕ pϕq ¨ T pϕ, θq eϕ pϕq “ 4
”

pV ¨ eϕ pϕqq
2
` pV ¨ er pϕ, θqq

2
ı

, (34)

eϕ pϕq ¨ T pϕ, θq eθ pϕ, θq “ 4 pV ¨ eϕ pϕqq pV ¨ eθ pϕ, θqq , (35)

eθ pϕ, θq ¨ T pϕ, θq eϕ pϕq “ 4 pV ¨ eϕ pϕqq pV ¨ eθ pϕ, θqq , (36)

eθ pϕ, θq ¨ T pϕ, θq eθ pϕ, θq “ 4
”

pV ¨ eθ pϕ, θqq
2
` pV ¨ er pϕ, θqq

2
ı

. (37)

From the fact that

peϕ pϕq ¨ T pϕ, θq eϕ pϕqq peθ pϕ, θq ¨ T pϕ, θq eθ pϕ, θqq “ (38)

“ 16
”

pV ¨ eϕ pϕqq
2
pV ¨ eθ pϕ, θqq

2
` pV ¨ eϕ pϕqq

2
pV ¨ er pϕ, θqq

2 (39)

`pV ¨ eθ pϕ, θqq
2
pV ¨ er pϕ, θqq

2
` pV ¨ er pϕ, θqq

4
ı

(40)

“ 16
”

pV ¨ eϕ pϕqq
2
pV ¨ eθ pϕ, θqq

2
` |V |2 pV ¨ er pϕ, θqq

2
ı

(41)

“ 16
”

pV ¨ eϕ pϕqq
2
pV ¨ eθ pϕ, θqq

2
` pV ¨ er pϕ, θqq

2
ı

, (42)

peϕ pϕq ¨ T pϕ, θq eθ pϕ, θqq peθ pϕ, θq ¨ T pϕ, θq eϕ pϕqq “ (43)

“ 16 pV ¨ eϕ pϕqq
2
pV ¨ eθ pϕ, θqq

2 , (44)

we can explicitly calculate the Jacobian as

Jσ˝ω pϕ, θq “

b

16 pcos θq2 pV ¨ er pϕ, θqq
2
“ 4 cos θ |V ¨ er pϕ, θq| (45)

“ 4 cos θ |V ¨ ω pϕ, θq| . (46)

It is now an easy computation to notice that Jω pϕ, θq “ cos θ, and therefore get

ż

S2
f pσq dσ “

ż π

´π

ż π
2

0
f pσ pω pϕ, θqqq Jσ˝ω pϕ, ωq dθ dϕ (47)

“

ż π

´π

ż π
2

0
4 |V ¨ ω pϕ, θq| f pσ pω pϕ, θqqq Jω pϕ, ωq dθ dϕ (48)

“

ż

tωPS2| ω3ą0u
4 |V ¨ ω| f pσ pωqq dω. (49)
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We now apply this to our problem. Using that pv2, v2˚q pσ pωqq “ pv
1, v1˚q pωq we can apply

the formula above to get
ż

S2
|pv ´ v˚q ¨ ω|

`

f 1f 1˚ ´ ff˚
˘

dω “ |v ´ v˚|

ż

S2

ˇ

ˇ

ˇ

ˇ

v ´ v˚
|v ´ v˚|

¨ ω

ˇ

ˇ

ˇ

ˇ

`

f 1f 1˚ ´ ff˚
˘

dω (50)

“ 2 |v ´ v˚|

ż

tωPS2| ω3ą0u

ˇ

ˇ

ˇ

ˇ

v ´ v˚
|v ´ v˚|

¨ ω

ˇ

ˇ

ˇ

ˇ

`

f 1f 1˚ ´ ff˚
˘

dω (51)

“
|v ´ v˚|

2

ż

S2

`

f2f2˚ ´ ff˚
˘

dσ, (52)

which implies the exercise.

Exercise 3

In this exercise we will study the explicit kernel of a power law potential.

In order to do so, we first introduce some basic properties of motion of a particle in R3.
Let U : R` Ñ r0,`8q a radial potential, and the force F : R3 Ñ R associated to it
defined as

F pxq :“ ´∇x pU p|x|qq . (53)

A particle submitted to F satisfies Newton’s equation, in the sense that its position and
velocity px ptq , v ptqq solve

"

Btx ptq “ v ptq ,
Btv ptq “ F px ptqq .

(54)

Once fixed the initial condition px p0q , v p0qq “ px0, v0q we know the solution to (54) is
unique.

(i) Prove that the angular momentum1 L ptq :“ x ptq ^ v ptq is conserved. Prove that
the movement of the particle lies in a plane.

Hint: For two generic vectors u, w P R3 what geometical property do u, w and
u^ w fulfill?

(ii) Let Ec ptq and Ep ptq be respectively the kinetic and potential energy of the particle
at time t, i.e.

Ec ptq “
1

2
|v ptq|2 , Ep ptq “ U p|x ptq|q . (56)

Show that the total energy of the system Etot ptq “ Ec ptq`Ep ptq is conserved in time
if px ptq , v ptqq is a solution of (54).

1Recall that given two vectors u,w P R3 with u ^ w we denote the vector product between u and w,
which is defined as

u^ w “

¨

˝

u2w3 ´ u3w2

u3w1 ´ u1w3

u1w2 ´ u2w1

˛

‚. (55)
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(iii) From point (i) the motion of the particle lays in the plain spanned by x0 and v0. Con-
sider the system of coordinates so that the component along the third component is
zero. Furthermore on the plain of motion consider polar coordinates, so that any vec-
tor x can be represented as x “ pρ cosα, ρ sinα, 0q in a suitable basis. Let ρ ptq , α ptq
the polar coordinates associated to x ptq (i.e. x ptq “ pρ ptq cosα ptq , ρ ptq sinα ptq , 0q).
Find the expression of Ec ptq and Etot ptq in terms of ρ ptq , α ptq.

Assume now that U is compactly supported, that is U pρq “ 0 for ρ ą σ for some real
σ ą 0 and decreasing in ρ. Let us assume in addition that |x0| ą σ, v0 “ ´V e1 with
V ą 0.

For small times the motion of the particle is free (as long as we are outside of the support of
the potential v ptq is constant); we assume that initially the particle approaches the origin
with impact parameter p P p0, σq, where the impact parameter is defined as p “ x0 ¨e2 (i.e.,
the trajectory can be written for small times as x ptq “ pt´ Cq v0 ` pe2 with a suitable
real constant C, see also Figure 1 below).

Figure 1: The movement of the particle through the support of the potential.

(iv) Using the repulsive property of the potential, prove that the distance ρ between the
particle and the origin has a single minimum ρ0.

Suppose that t0 denotes the time at which the minimum is reached. Consider the line
between the origin and x pt0q (the so-called apse line), and define as θ the angle between
e1 and this line. The angle θ is called the deviation angle.
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(v) Prove that the trajectory of x ptq is symmetric with respect to this minimum, i.e.
we have for any t P R

ρ pt0 ` tq “ ρ pt0 ´ tq , α pt0 ` tq ´ θ “ ´pα pt0 ´ tq ´ θq . (57)

(vi) In the case of the potential with cut-off, prove that the conservation of the total
energy and the angular momentum respectively write:

"

1
2

`

9ρ2 ` ρ2 9α2
˘

` U pρq “ 1
2V

2 ` U pσq ,
ρ2 9α “ pV,

(58)

where 9ρ and 9α denote respectively the time derivatives of ρ and α.

Hint: Consider the total energy and the angular momentum at the point xin,
where the particle enters the support of the potential (that is, the first time that
|x ptq| “ σ).

(vii) We denote as t1 the time such that x pt1q “ xin “ σ pcosα pt1q , sinα pt1q , 0q. Prove
that

θ “

ż t0

t1

9α ptq dt` arcsin
´ p

σ

¯

. (59)

(viii) Prove the following identity:

ż t0

t1

9α ptq dt “
pV
?

2

ż σ

ρ0

1

w2

c

V 2

2

´

1´ p2

w2

¯

´ U pwq ` U pσq

dw. (60)

Hint: Use the conservation laws (58) to find an expression for 9ρ and 9α in terms of
ρ only, write 9α “ 9α

9ρ 9ρ, substitute 9α
9ρ with a function of ρ only, integrate in time and

change variables as ρ ptq “ w.

(ix) Find an equation satisfied by the minimal distance ρ0. Up to assume that we can
solve this equation, deduce an explicit expression of θ (the expression (60) is of
course not explicit, since it relies on determining the quantity 9α).

Consider now U pρq “ kρ1´n in its support. The explicit expression of θ reads:

θ “
pV
?

2

ż σ

ρ0

1

w2

c

V 2

2

´

1´ p2

w2

¯

´ k
wn´1 `

k
σn´1

dw ` arcsin
´ p

σ

¯

. (61)

(x) Prove that, thanks to a change of variables, the deviation angle θ can be written as:

θ “

ż x̄

λ

1
b

1´ x2 ´
`

x
b

˘n´1
dx` arcsin

´ p

σ

¯

, (62)

with

λ “
p

σ

c

1`
2k

V 2σn´1
, b “ p

ˆ

V 2

2k
`

k

σn´1

˙

1
n´1

, (63)

and x̄ solving the equation 1´ x̄2 ´
`

x̄
b

˘n´1
“ 0.
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(xi) Finally consider the limit σ Ñ `8 (which corresponds to relaxing the cut-off on
the support of the potential). Recall that the collision kernel is written as

B pθ, V q “ V p pθq Bθp pθq . (64)

Prove that in the case of the inverse power law potential U pρq “ kρ1´n without
cut-off, the collision kernel has the form:

B pθ, V q “ V γb pθq , (65)

with γ “ n´5
n´1 , and where b is seen as a function of θ through (62).

Proof. We start from (i). Given that the force can be explicitly written as F pxq “
´U 1 p|x|q x

|x| , it is parallel to the vector x ptq for every time. Therefore from general prop-
erties of the vector product we get

BtL ptq “ pBtx ptqq ^ v ptq ` x ptq ^ pBtv ptqq “ v ptq ^ v ptq ` x ptq ^ F px ptqq “ 0, (66)

and the angular momentum is conserved. Now, in general we have that a ^ b is both
orthogonal to a and b, so if L ptq is constant, this means that the plain on which the
dynamics happens is fixed as the orthogonal plane to L p0q.

To prove (ii) we differentiate Etot ptq to get

BtEtot ptq “ v ptq ¨ Btv ptq ` F px ptqq ¨ v ptq “ 0 (67)

To prove (iii), in analogy to the previous exercise we define the following vectors:

er pαq :“

¨

˝

cosα
sinα

0

˛

‚, eα pαq :“

¨

˝

´ sinα
cosα

0

˛

‚. (68)

Clearly er ¨eα “ 0, Bαer “ eα and Bαeα “ ´er. Furthermore we have x ptq “ ρ ptq er pα ptqq,
and therefore, given that v ptq “ Btx ptq, the polar decomposition of v ptq is given as

v ptq “ 9ρ ptq er pα ptqq ` ρ ptq 9α ptq eα pα ptqq . (69)

From this it is easy to see that |v ptq|2 “ | 9ρ ptq|2 ` |ρ ptq|2 | 9α ptq|2. As a consequence the
energy can be written as

Etot ptq “
1

2
| 9ρ ptq|2 `

1

2
|ρ ptq|2 | 9α ptq|2 ` U pρ ptqq (70)

To solve (iv) we can now write the derivative of v as

9v ptq “ :ρ ptq er pα ptqq ` 2 9ρ ptq 9α ptq eα pα ptqq (71)

` ρ ptq :α ptq eα pα ptqq ´ ρ ptq p 9α ptqq2 er pα ptqq . (72)

Now, we can also write the force term as

F px ptqq “ ´U 1 pρ ptqq er pα ptqq , (73)
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which means we can rewrite (54) as

"

:ρ´ ρ 9α2 “ ´U 1 pρq ,
2 9ρ 9α` ρ:α “ 0.

(74)

Given that the second equation can be written as Bt
`

ρ2 9α
˘

“ 0, this means that 9α ptq “ C
ρ2

for a suitable constant C. We substitute this information in the first term in (74) to get
#

:ρ “ C2

ρ3
´ U 1 pρq ,

9α “ C
ρ2
.

(75)

Notice now that if we consider the second derivative of the second component of x we get

:x2 ptq “
´

:ρ ptq ´ ρ ptq p 9α ptqq2
¯

sinα ptq ` p2 9ρ ptq 9α ptq ` ρ ptq :α ptqq cosα ptq (76)

“

´

:ρ ptq ´ ρ ptq p 9α ptqq2
¯

sinα ptq “ ´U 1 pρ ptqq sinα ptq (77)

“
ˇ

ˇU 1 pρ ptqq
ˇ

ˇ sinα ptq , (78)

where in the last equality we used the fact that U is decreasing.

We now show that if x2 p0q ą 0 and 9x2 p0q “ 0 (which is our case), then ρ can never vanish.
To do so we will show something stronger, that is that x2 can only increase. Assume for
example that there exists a time τ0 ą 0 such that x2 pτ0q ă x2 p0q. By continuity of x2

and up to choosing a different (smaller) value of τ0, we can assume that x2 psq ą 0 for
any s P r0, τ0s. The Rolle’s theorem implies now that there exists a time τ1 P p0, τ0q such
that 9x2 pτ1q ă 0. Given that 9x2 p0q “ 0 again by assumption, we get that applying Rolle’s
theorem once more, there exists a value τ2 P p0, τ1q such that :x2 pτ2q ă 0. From (76) we
get that sinα pτ2q ă 0 which implies that x2 pτ2q ă 0, which is a contradiction. Therefore
x2 pτq ě x2 p0q for any τ ě 0.

This last fact with (75) implies that :ρ ą 0 always. This implies that if a zero for 9ρ (and
therefore a minimum for ρ) exists, it must be unique. We now show that ρ has a minimum.
Indeed, suppose that there exists a radius R such that for any t ą 0 we have ρ ptq ď R.
We then get

ρ ptq “ ρ p0q ` t 9ρ p0q `

ż t

0
pt´ sq :ρ psq ds ě ρ p0q ` t 9ρ p0q `

ż t

0
pt´ sq

C

R3
ds (79)

“ ρ p0q ` t 9ρ p0q `
Ct2

2R3
. (80)

This implies that for t large enough we have ρ ą R, which is a contradiction and proves
that there exists a time τ ą 0 such that ρ pτq ą ρ p0q. Given that initially 9ρ p0q ă 0, this
implies that there exists a minimum point for ρ.

Now, as hinted in the text, let’s denote with t0 the time such that 9ρ pt0q “ 0. To solve (v)
now, notice that both ρ pt0 ` tq and ρ pt0 ´ tq solve the problem

$

’

&

’

%

:γ “ C2

γ3
´ U 1 pγq ,

γ p0q “ ρ pt0q ,
9γ p0q “ 0,

(81)
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therefore ρ pt0 ` tq “ ρ pt0 ´ tq.

Now, define as in the text θ “ α pt0q; we have that 9α “ C
ρ2

, so we get

α pt0 ` tq ´ θ “

ż t

0
Bsα pt0 ` sq ds “

ż t

0

C

pρ pt0 ` sqq
2ds “

ż t

0

C

pρ pt0 ´ sqq
2ds (82)

“ ´

ż t

0
Bsα pt0 ´ tq ds “ ´pα pt0 ´ tq ´ θq . (83)

To solve (vi) we get that

x ptq ^ v ptq “

¨

˝

0
0

ρ ptq2 9α ptq

˛

‚. (84)

Moreover at initial time we have that the angular momentum is given as

x0 ^ v0 “ ppC ´ tq v0 ` pe2q ^ p´V e1q “ pV. (85)

Together with conservation of the energy we obtain (58).

To solve (vii) it is enough to observe that by definition θ “ α pt0q and that α pt1q “

arcsin
´

xpt1q¨e2
|xpt1q|

¯

“ arcsin
`

p
σ

˘

, and therefore

θ “ α pt1q “

ż t0

t1

9α ptq dt` α pt1q “

ż t0

t1

9α ptq dt` arcsin
´ p

σ

¯

. (86)

To prove (viii) we get that from the conservation of momentum we get 9α “ pV
ρ2

. Substi-
tuting this in the equation for the conservation of the energy we get

| 9ρ| “

d

2

„

1

2
V 2 ` U pσq ´

p2V 2

2ρ2
´ U pρq



(87)

“
?

2

d

V 2

2

ˆ

1´
p2

ρ2

˙

´ U pρq ` U pσq. (88)

As a consequence we now get

ż t0

t1

9α ptq dt “

ż t0

t1

pV

pρ ptqq2
dt (89)

“

ż t0

t1

pV

pρ ptqq2
1

?
2

c

V 2

2

´

1´ p2

pρptqq2

¯

´ U pρ ptqq ` U pσq

| 9ρ ptq| dt (90)

“
pV
?

2

ż σ

ρ0

1

w2

c

V 2

2

´

1´ p2

w2

¯

´ U pwq ` U pσq

dw, (91)

where in the last equality we used the fact that between t1 and t0 we have |ρ ptqq “ ´ρ ptq
and used the change of variables ρ ptq “ w.
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To solve (ix) we notice that 9ρ pt0q “ 0 and 58 to get that ρ0 must solve

p2V 2

2ρ2
0

` U pρ0q “
V 2

2
` U pσq , (92)

and therefore

V 2

2

ˆ

1´
p2

ρ2
0

˙

“ U pσq ´ U pρ0q . (93)

The formula for θ is now given as

θ “
pV
?

2

ż σ

ρ0

1

w2

c

V 2

2

´

1´ p2

w2

¯

´ U pwq ` U pσq

dw ` arcsin
´ p

σ

¯

. (94)

To prove (x) we first look for C, γ, b such that if x “ γ
w we have

V 2

2

ˆ

1´
p2

w2

˙

´
k

wn´1
`

k

σn´1
“ C

ˆ

1´ x2 ´

´x

b

¯n´1
˙

. (95)

This implies
$

’

&

’

%

C “ V 2

2 ` k
σn´1 ,

Cγ2 “
p2V 2

2 ,

C
`

γ
b

˘n´1
“ k.

(96)

The solution of this system is given by C “ V 2

2 ` k
σn´1 , γ “ p

`

1` 2k
V 2σn´1

˘´ 1
2 and

b “ pV
?

2k
1

n´1

´

V 2

2 ` k
σn´1

¯´ n´3
2pn´1q

.

We now change variables in the integral for θ to get

pV
?

2

ż σ

ρ0

1

w2

c

V 2

2

´

1´ p2

w2

¯

´ k
wn´1 `

k
σn´1

dw “ (97)

“

ż
γ
ρ 0

γ
σ

1
b

1´ x2 ´
`

x
b

˘n´1
dx. (98)

If x “ γ
ρ 0

the equation for x comes from the equation for ρ0.

Finally, to prove (xi) we get that, after performing the limit σ Ñ8, b and θ solve

θ “

ż x

0

1
b

1´ x2 ´
`

x
b

˘n´1
dx (99)

where now x solves

1´ x2 ´

ˆ

x

b

˙n´1

“ 0, (100)
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and where b “ p
´

V 2

2k

¯
1

n´1
; as a consequence, p as function of θ can be seen as p pθq “

´

V 2

2k

¯´ 1
n´1

b pθq. This allows us to conclude that

B pθ, V q “ V p pθq Bθp pθq “ V

ˆ

V 2

2k

˙´ 2
n´1

b pθq Bθb pθq “ V
n´5
n´1B pθq , (101)

with a suitable B pθq.
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