

# Kinetic Equations

## Solution to the Exercises

– 29.04.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – [daniele.dimonte@unibas.ch](mailto:daniele.dimonte@unibas.ch)

### Exercise 1

Let  $f : \mathbb{R}^3 \rightarrow \mathbb{R}_+$  be a regular enough function, decaying sufficiently fast at infinity. Prove that the following statements are equivalent:

- (i)  $\int_{\mathbb{R}^3} Q(f, f) \log f dv = 0$ ;
- (ii)  $\log f$  is a collision invariant;
- (iii)  $f$  is a Maxwellian distribution, i.e. there exist  $\rho \in \mathbb{R}$ ,  $\theta > 0$  and  $u \in \mathbb{R}^3$  such that  $f(v) = \frac{\rho}{(2\pi\theta)^{\frac{3}{2}}} e^{-\frac{|v-u|^2}{2\theta}}$  for all  $v \in \mathbb{R}^3$ ;
- (iv)  $Q(f, f) = 0$ .

*Proof.* First of all notice that (ii)  $\iff$  (iii). From the characterization we gave last time of a collision invariant we have that  $\log f(v) = a|v| + b \cdot v + c$  with  $a, c \in \mathbb{R}$ ,  $b \in \mathbb{R}^3$ . This implies that

$$f(v) = e^{a|v|^2 + b \cdot v + c}. \quad (1)$$

Given that  $f$  is decaying at infinity we get  $a = -|a|$ . Given that we can now write

$$a|v|^2 + b \cdot v + c = -|a||v|^2 + b \cdot v + c = -|a| \left( v - \frac{1}{2|a|} b \right)^2 + \frac{|b|^2}{4|a|} + c. \quad (2)$$

If we define  $\theta := \frac{1}{2|a|}$ ,  $u := \frac{1}{2|a|} b$  and  $\rho := \left( \frac{\pi}{|a|} \right)^{\frac{3}{2}} e^{\frac{|b|^2}{4|a|} + c}$  we can clearly see that  $f$  is a Maxwellian distribution. The viceversa comes easily from a similar argument.

We now prove that (i)  $\Rightarrow$  (ii)  $\Rightarrow$  (iv)  $\Rightarrow$  (i) to conclude.

To prove (i)  $\Rightarrow$  (ii) recall that we saw in class that we can rewrite  $Q(f, f)$  as

$$\int_{\mathbb{R}^3} Q(f, f) \log f dv = \quad (3)$$

$$= -\frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} (f' f'_* - f f_*) \log \left( \frac{f' f'_*}{f f_*} \right) B(v - v_*, \omega) d\omega dv dv_* \quad (4)$$

$$= -\frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} f f_* \left( \frac{f' f'_*}{f f_*} - 1 \right) \log \left( \frac{f' f'_*}{f f_*} \right) B(v - v_*, \omega) d\omega dv dv_*. \quad (5)$$

Given that  $f f_* B(v - v_*, \omega) \geq 0$  and that the function  $(\lambda - 1) \log(\lambda) \geq 0$ ,  $Q(f, f) = 0$  implies that  $f f_* \left( \frac{f' f'_*}{f f_*} - 1 \right) \log \left( \frac{f' f'_*}{f f_*} \right) B(v - v_*, \omega) = 0$ . Given that  $f f_* B(v - v_*, \omega) > 0$

for any  $\omega \neq 0$  we get that  $\frac{f'f'_*}{ff_*} = 1$  almost everywhere. This implies that  $\log f$  is collision invariant and therefore (ii).

Using the same expression for  $Q(f, f)$ , if  $\log f$  is collision invariant we have  $\frac{f'f'_*}{ff_*} = 1$  and therefore  $Q(f, f) = 0$ . This proves (ii)  $\Rightarrow$  (iv).

Finally (iv)  $\Rightarrow$  (i) is trivial, which concludes the proof of the exercise.  $\square$

## Exercise 2

Let  $v, v_* \in \mathbb{R}^3$ , and  $\omega \in \mathbb{S}^2$ . In the lecture we defined the post-collisional velocities  $(v', v'_*)$  associated to the pair of pre-collisional velocities  $(v, v_*)$  with the angular parameter  $\omega$  as:

$$\begin{cases} v' = v - (v - v_*) \cdot \omega \omega, \\ v'_* = v_* + (v - v_*) \cdot \omega \omega. \end{cases} \quad (6)$$

We denote as  $(v', v'_*)(\omega)$  the pair of post-collisional velocities defined by (6). In the literature, one may find another parametrization for the post-collisional velocities, called the  $\sigma$ -representation, defined for any  $\sigma \in \mathbb{S}^2$  as

$$\begin{cases} v'' = \frac{v+v_*}{2} + \frac{|v-v_*|}{2} \sigma, \\ v''_* = \frac{v+v_*}{2} - \frac{|v-v_*|}{2} \sigma. \end{cases} \quad (7)$$

We denote as  $(v'', v''_*)(\sigma)$  the pair of post-collisional velocities defined by (7).

- (i) Prove that the two parametrizations are equivalent, i.e. that for any  $\omega \in \mathbb{S}^2$ , there exists a unique parameter  $\sigma \in \mathbb{S}^2$  such that  $(v', v'_*)(\omega) = (v'', v''_*)(\sigma)$ .

Prove also that for any  $\sigma \in \mathbb{S}^2$  there exists a parameter  $\omega$  such that  $(v', v'_*)(\omega) = (v'', v''_*)(\sigma)$ . Is this choice of  $\omega$  unique? If not, how many possibilities are there for  $\omega$  for any given  $\sigma$ ?

- (ii) Represent on a picture, for a given pair of pre-collisional velocities  $(v, v_*) \in \mathbb{R}^6$ ,  $v \neq v_*$ , and a given angular parameter  $\omega \in \mathbb{S}^2$ , the associated pair of post-collisional velocities  $(v', v'_*)(\omega)$ . Represent also the vector  $\sigma$  associated to  $\omega$ .
- (iii) We have seen in the lecture that the collision kernel for the hard sphere model is given by  $|(v - v_*) \cdot \omega|$ , that is the collision term of the Boltzmann equation writes:

$$Q(f, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} |(v - v_*) \cdot \omega| (f'f'_* - ff_*) d\omega dv_*. \quad (8)$$

Prove that in the  $\sigma$ -representation the hard sphere collision kernel is given by  $|v - v_*|$ , i.e.:

$$Q(f, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} \frac{|v - v_*|}{2} (f''f''_* - ff_*) d\sigma dv_*, \quad (9)$$

(where  $f'' = f(v'')$  and  $f''_* = f(v''_*)$ ).

*Proof.* We first give some general properties of (6) and (7). Suppose first that we have  $(v', v'_*) (\omega) = (v', v'_*) (\omega')$  for all  $v, v_* \in \mathbb{R}^3$ . From the fact that  $v' (\omega) = v' (\omega')$  we get immediately that  $(v - v_*) \cdot \omega \omega = (v - v_*) \cdot \omega' \omega'$ . This implies first that  $\omega$  and  $\omega'$  are colinear, and subsequently that are equal up to a sign. Viceversa, the  $\omega$ -parametrizations associated to the vectors  $\omega, -\omega \in \mathbb{S}^2$  coincide, i.e.  $(v', v'_*) (-\omega) = (v', v'_*) (\omega)$ . Finally, given that  $\omega = \frac{v'_* - v_*}{|v'_* - v_*|}$ ,  $\omega$  can always be identified up to a sign, given the transformation.

Suppose now that  $(v'', v''_*) (\sigma) = (v'', v''_*) (\sigma')$  for all  $v, v_* \in \mathbb{R}^3$ . From the fact that  $v'' (\sigma) - v''_* (\sigma) = v'' (\sigma') - v''_* (\sigma')$  we get that  $\sigma = \sigma'$ . Moreover  $\sigma = \frac{v'' - v''_*}{|v - v_*|}$ , therefore given the transformation we can always uniquely identify  $\sigma$ .

We get now to point (i). Let  $\omega \in \mathbb{S}^2$  be fixed. Then from the properties of above the  $\sigma$  associated to the transformation that sends  $v, v_*$  in  $v', v'_*$  identifies  $\sigma$  uniquely. On the other hand to each  $\sigma$  we have two corresponding values of  $\omega$  identified, equal in direction but opposite in sign.

Regarding point (iii), denote as  $v' (\omega, v, v_*)$  and  $v'_* (\omega, v, v_*)$  the vectors defined through (6), where we made explicit the dependence on  $v$  and  $v_*$ . First of all we get that

$$v' (\omega, v, v_*) = v' (\omega, v, v_*) - (v' (\omega, v, v_*) - v'_* (\omega, v, v_*)) \cdot \omega \omega \quad (10)$$

$$= v - (v - v_*) \cdot \omega \omega - (v - v_* - 2(v - v_*) \cdot \omega \omega) \cdot \omega \omega = v, \quad (11)$$

$$v'_* (\omega, v, v_*) = v'_* (\omega, v, v_*) + (v' (\omega, v, v_*) - v'_* (\omega, v, v_*)) \cdot \omega \omega \quad (12)$$

$$= v_* + (v - v_*) \cdot \omega \omega + (v - v_* - 2(v - v_*) \cdot \omega \omega) \cdot \omega \omega = v_*. \quad (13)$$

Given that the change of variable associated to the transformation  $v' = v' (\omega, v, v_*)$ ,  $v'_* = v'_* (\omega, v, v_*)$  is of the form  $dv' dv'_* = dv dv_*$

As a consequence we can rewrite  $Q(f, f)$  as

$$Q(f, f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}^2} |(v - v_*) \cdot \omega| (f' f'_* - f f_*) d\omega dv_* \quad (14)$$

We now want to perform the change of variables  $\sigma \rightarrow \omega$ . Indeed, imposing that  $v' (\omega, v, v_*) = v'' (\sigma, v, v_*)$ , we can easily deduce that

$$\sigma = -\frac{v - v_*}{|v - v_*|} + 2 \frac{v - v_*}{|v - v_*|} \cdot \omega \quad (15)$$

Recall now that for a generic function  $f \in L^1(\mathbb{S}^2)$ , the integral is defined in such a way that for any bijective map  $\xi \in C^1(U; \mathbb{S}^2)$  with  $U \subseteq \mathbb{R}^2$  (a parametrization), we get

$$\int_{\mathbb{S}^2} f(\sigma) d\sigma = \int_U f(\xi(x)) J_\xi(x) dx, \quad (16)$$

with

$$J_\xi(x) := \sqrt{\det \left[ \nabla_x \xi(x) (\nabla_x \xi(x))^T \right]} \quad (17)$$

We consider now the parametrization given by the composition of the change of variables  $\omega \rightarrow \sigma$  and the parametrization give in polar coordinates. In other words, with a little

abuse of notation we define

$$\begin{aligned}\sigma : \{\omega \in \mathbb{S}^2 \mid \omega_3 > 0\} &\longrightarrow \mathbb{S}^2 \\ \omega &\longmapsto -V + 2V \cdot \omega \omega, \\ \omega : [-\pi, \pi] \times [0, \frac{\pi}{2}] &\longrightarrow \{\omega \in \mathbb{S}^2 \mid \omega_3 > 0\} \\ (\varphi, \theta) &\longmapsto (\cos \theta \cos(\varphi), \cos \theta \sin(\varphi), \sin \theta),\end{aligned}\tag{18}$$

with  $V \in \mathbb{S}^2$ .

For reason that will become clear later, we introduce the vectors  $e_r(\varphi, \theta)$ ,  $e_\theta(\varphi, \theta)$  and  $e_\varphi(\varphi)$  defined as

$$e_r(\varphi, \theta) := \begin{pmatrix} \cos \theta \cos(\varphi) \\ \cos \theta \sin(\varphi) \\ \sin \theta \end{pmatrix},\tag{19}$$

$$e_\theta(\varphi, \theta) := \partial_\theta e_r(\varphi, \theta) = \begin{pmatrix} -\sin \theta \cos(\varphi) \\ -\sin \theta \sin(\varphi) \\ \cos \theta \end{pmatrix},\tag{20}$$

$$e_\varphi(\varphi) := \frac{1}{\cos \theta} \partial_\varphi e_r(\varphi, \theta) = \begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \\ 0 \end{pmatrix}.\tag{21}$$

Given that

$$|e_r(\varphi, \theta)| = |e_\theta(\varphi, \theta)| = |e_\varphi(\varphi)| = 1,\tag{22}$$

$$e_r(\varphi, \theta) \cdot e_\theta(\varphi, \theta) = e_r(\varphi, \theta) \cdot e_\varphi(\varphi) = e_\theta(\varphi, \theta) \cdot e_\varphi(\varphi) = 0,\tag{23}$$

the set  $\{e_r(\varphi, \theta), e_\theta(\varphi, \theta), e_\varphi(\varphi)\}$  is a basis for  $\mathbb{R}^3$ . Moreover, by definition we have that  $\omega(\varphi, \theta) = e_r(\varphi, \theta)$ .

We then calculate the Jacobian  $J_{\sigma \circ \omega}$  as

$$J_{\sigma \circ \omega}(\varphi, \theta) = \sqrt{\det \left[ \nabla_{\varphi, \theta} (\sigma \circ \omega(\varphi, \theta)) (\nabla_{\varphi, \theta} (\sigma \circ \omega(\varphi, \theta)))^T \right]}\tag{24}$$

$$= \sqrt{\det \left[ (\nabla_{\varphi, \theta} \omega)(\varphi, \theta) (\nabla_\omega \sigma)(\omega(\varphi, \theta)) [(\nabla_\omega \sigma)(\omega(\varphi, \theta))]^T [(\nabla_{\varphi, \theta} \omega)(\varphi, \theta)]^T \right]}.\tag{25}$$

It is easy to calculate the matrices  $(\nabla_{\varphi, \theta} \omega)(\varphi, \theta)$  and  $(\nabla_\omega \sigma)(\omega)$  as

$$(\nabla_{\varphi, \theta} \omega)(\varphi, \theta) = \begin{pmatrix} \cos \theta & e_\varphi(\varphi)^T \\ e_\varphi(\varphi, \theta)^T \end{pmatrix},\tag{26}$$

$$(\nabla_\omega \sigma)(\omega) = 2|V\rangle\langle\omega| + 2V \cdot \omega \text{id},\tag{27}$$

where  $(|V\rangle\langle\omega|)_{j,k} := V_j \omega_k$  (and in particular  $|V\rangle\langle\omega|v = \omega \cdot v V$  for any  $v \in \mathbb{R}^3$ ). As a consequence for any  $\omega \in \{\omega \in \mathbb{S}^2 \mid \omega_3 > 0\}$  we get

$$(\nabla_\omega \sigma)(\omega) [(\nabla_\omega \sigma)(\omega)]^T = 4(|V\rangle\langle\omega| + V \cdot \omega \text{id}) (|\omega\rangle\langle V| + V \cdot \omega \text{id})\tag{28}$$

$$= 4 \left[ |V\rangle\langle V| + V \cdot \omega |V\rangle\langle\omega| + V \cdot \omega |\omega\rangle\langle V| + (V \cdot \omega)^2 \text{id} \right].\tag{29}$$

Define now  $T(\varphi, \theta) = (\nabla_\omega \sigma)(\omega(\varphi, \theta))[(\nabla_\omega \sigma)(\omega(\varphi, \theta))]^T$ ; as a consequence we get

$$(\nabla_{\varphi, \theta} \omega)(\varphi, \theta) (\nabla_\omega \sigma)(\omega(\varphi, \theta))[(\nabla_\omega \sigma)(\omega(\varphi, \theta))]^T [(\nabla_{\varphi, \theta} \omega)(\varphi, \theta)]^T = \quad (30)$$

$$= \begin{pmatrix} \cos \theta & e_\varphi(\varphi)^T \\ e_\varphi(\varphi, \theta)^T \end{pmatrix} T(\varphi, \theta) (\cos \theta & e_\varphi(\varphi), e_\varphi(\varphi, \theta)) \quad (31)$$

$$= \begin{pmatrix} (\cos \theta)^2 e_\varphi(\varphi) \cdot T(\varphi, \theta) e_\varphi(\varphi) & \cos \theta e_\varphi(\varphi) \cdot T(\varphi, \theta) e_\theta(\varphi, \theta) \\ \cos \theta e_\theta(\varphi, \theta) \cdot T(\varphi, \theta) e_\varphi(\varphi) & e_\theta(\varphi, \theta) \cdot T(\varphi, \theta) e_\theta(\varphi, \theta) \end{pmatrix}. \quad (32)$$

Given that  $\omega(\varphi, \theta) = e_r(\varphi, \theta)$  and from the fact that  $\{e_r(\varphi, \theta), e_\theta(\varphi, \theta), e_\varphi(\varphi)\}$  is a basis we have that for any  $v, w \in \text{span}_{\mathbb{R}}\{e_\theta(\varphi, \theta), e_\varphi(\varphi)\}$

$$v \cdot |V\rangle\langle\omega(\varphi, \theta)|w = w \cdot |V\rangle\langle\omega(\varphi, \theta)|v = 0. \quad (33)$$

We can finally get

$$e_\varphi(\varphi) \cdot T(\varphi, \theta) e_\varphi(\varphi) = 4 \left[ (V \cdot e_\varphi(\varphi))^2 + (V \cdot e_r(\varphi, \theta))^2 \right], \quad (34)$$

$$e_\varphi(\varphi) \cdot T(\varphi, \theta) e_\theta(\varphi, \theta) = 4 (V \cdot e_\varphi(\varphi)) (V \cdot e_\theta(\varphi, \theta)), \quad (35)$$

$$e_\theta(\varphi, \theta) \cdot T(\varphi, \theta) e_\varphi(\varphi) = 4 (V \cdot e_\varphi(\varphi)) (V \cdot e_\theta(\varphi, \theta)), \quad (36)$$

$$e_\theta(\varphi, \theta) \cdot T(\varphi, \theta) e_\theta(\varphi, \theta) = 4 \left[ (V \cdot e_\theta(\varphi, \theta))^2 + (V \cdot e_r(\varphi, \theta))^2 \right]. \quad (37)$$

From the fact that

$$(e_\varphi(\varphi) \cdot T(\varphi, \theta) e_\varphi(\varphi)) (e_\theta(\varphi, \theta) \cdot T(\varphi, \theta) e_\theta(\varphi, \theta)) = \quad (38)$$

$$= 16 \left[ (V \cdot e_\varphi(\varphi))^2 (V \cdot e_\theta(\varphi, \theta))^2 + (V \cdot e_\varphi(\varphi))^2 (V \cdot e_r(\varphi, \theta))^2 \right. \quad (39)$$

$$\left. + (V \cdot e_\theta(\varphi, \theta))^2 (V \cdot e_r(\varphi, \theta))^2 + (V \cdot e_r(\varphi, \theta))^4 \right] \quad (40)$$

$$= 16 \left[ (V \cdot e_\varphi(\varphi))^2 (V \cdot e_\theta(\varphi, \theta))^2 + |V|^2 (V \cdot e_r(\varphi, \theta))^2 \right] \quad (41)$$

$$= 16 \left[ (V \cdot e_\varphi(\varphi))^2 (V \cdot e_\theta(\varphi, \theta))^2 + (V \cdot e_r(\varphi, \theta))^2 \right], \quad (42)$$

$$(e_\varphi(\varphi) \cdot T(\varphi, \theta) e_\theta(\varphi, \theta)) (e_\theta(\varphi, \theta) \cdot T(\varphi, \theta) e_\varphi(\varphi)) = \quad (43)$$

$$= 16 (V \cdot e_\varphi(\varphi))^2 (V \cdot e_\theta(\varphi, \theta))^2, \quad (44)$$

we can explicitly calculate the Jacobian as

$$J_{\sigma \circ \omega}(\varphi, \theta) = \sqrt{16 (\cos \theta)^2 (V \cdot e_r(\varphi, \theta))^2} = 4 \cos \theta |V \cdot e_r(\varphi, \theta)| \quad (45)$$

$$= 4 \cos \theta |V \cdot \omega(\varphi, \theta)|. \quad (46)$$

It is now an easy computation to notice that  $J_\omega(\varphi, \theta) = \cos \theta$ , and therefore get

$$\int_{\mathbb{S}^2} f(\sigma) d\sigma = \int_{-\pi}^{\pi} \int_0^{\frac{\pi}{2}} f(\sigma(\omega(\varphi, \theta))) J_{\sigma \circ \omega}(\varphi, \omega) d\theta d\varphi \quad (47)$$

$$= \int_{-\pi}^{\pi} \int_0^{\frac{\pi}{2}} 4 |V \cdot \omega(\varphi, \theta)| f(\sigma(\omega(\varphi, \theta))) J_\omega(\varphi, \omega) d\theta d\varphi \quad (48)$$

$$= \int_{\{\omega \in \mathbb{S}^2 \mid \omega_3 > 0\}} 4 |V \cdot \omega| f(\sigma(\omega)) d\omega. \quad (49)$$

We now apply this to our problem. Using that  $(v'', v''_*) (\sigma(\omega)) = (v', v'_*) (\omega)$  we can apply the formula above to get

$$\int_{\mathbb{S}^2} |(v - v_*) \cdot \omega| (f' f'_* - f f_*) d\omega = |v - v_*| \int_{\mathbb{S}^2} \left| \frac{v - v_*}{|v - v_*|} \cdot \omega \right| (f' f'_* - f f_*) d\omega \quad (50)$$

$$= 2 |v - v_*| \int_{\{\omega \in \mathbb{S}^2 \mid \omega_3 > 0\}} \left| \frac{v - v_*}{|v - v_*|} \cdot \omega \right| (f' f'_* - f f_*) d\omega \quad (51)$$

$$= \frac{|v - v_*|}{2} \int_{\mathbb{S}^2} (f'' f''_* - f f_*) d\sigma, \quad (52)$$

which implies the exercise.  $\square$

### Exercise 3

In this exercise we will study the explicit kernel of a power law potential.

In order to do so, we first introduce some basic properties of motion of a particle in  $\mathbb{R}^3$ . Let  $U : \mathbb{R}_+ \rightarrow [0, +\infty)$  a radial potential, and the force  $F : \mathbb{R}^3 \rightarrow \mathbb{R}$  associated to it defined as

$$F(x) := -\nabla_x(U(|x|)). \quad (53)$$

A particle submitted to  $F$  satisfies Newton's equation, in the sense that its position and velocity  $(x(t), v(t))$  solve

$$\begin{cases} \partial_t x(t) = v(t), \\ \partial_t v(t) = F(x(t)). \end{cases} \quad (54)$$

Once fixed the initial condition  $(x(0), v(0)) = (x_0, v_0)$  we know the solution to (54) is unique.

- (i) Prove that the *angular momentum*<sup>1</sup>  $L(t) := x(t) \wedge v(t)$  is conserved. Prove that the movement of the particle lies in a plane.

*Hint:* For two generic vectors  $u, w \in \mathbb{R}^3$  what geometrical property do  $u, w$  and  $u \wedge w$  fulfill?

- (ii) Let  $\mathcal{E}_c(t)$  and  $\mathcal{E}_p(t)$  be respectively the *kinetic and potential energy of the particle* at time  $t$ , i.e.

$$\mathcal{E}_c(t) = \frac{1}{2} |v(t)|^2, \quad \mathcal{E}_p(t) = U(|x(t)|). \quad (56)$$

Show that the total energy of the system  $\mathcal{E}_{tot}(t) = \mathcal{E}_c(t) + \mathcal{E}_p(t)$  is conserved in time if  $(x(t), v(t))$  is a solution of (54).

---

<sup>1</sup>Recall that given two vectors  $u, w \in \mathbb{R}^3$  with  $u \wedge w$  we denote the **vector product** between  $u$  and  $w$ , which is defined as

$$u \wedge w = \begin{pmatrix} u_2 w_3 - u_3 w_2 \\ u_3 w_1 - u_1 w_3 \\ u_1 w_2 - u_2 w_1 \end{pmatrix}. \quad (55)$$

- (iii) From point (i) the motion of the particle lays in the plain spanned by  $x_0$  and  $v_0$ . Consider the system of coordinates so that the component along the third component is zero. Furthermore on the plain of motion consider polar coordinates, so that any vector  $x$  can be represented as  $x = (\rho \cos \alpha, \rho \sin \alpha, 0)$  in a suitable basis. Let  $\rho(t)$ ,  $\alpha(t)$  the polar coordinates associated to  $x(t)$  (i.e.  $x(t) = (\rho(t) \cos \alpha(t), \rho(t) \sin \alpha(t), 0)$ ). Find the expression of  $\mathcal{E}_c(t)$  and  $\mathcal{E}_{tot}(t)$  in terms of  $\rho(t)$ ,  $\alpha(t)$ .

Assume now that  $U$  is compactly supported, that is  $U(\rho) = 0$  for  $\rho > \sigma$  for some real  $\sigma > 0$  and decreasing in  $\rho$ . Let us assume in addition that  $|x_0| > \sigma$ ,  $v_0 = -Ve_1$  with  $V > 0$ .

For small times the motion of the particle is free (as long as we are outside of the support of the potential  $v(t)$  is constant); we assume that initially the particle approaches the origin with impact parameter  $p \in (0, \sigma)$ , where the impact parameter is defined as  $p = x_0 \cdot e_2$  (i.e., the trajectory can be written for small times as  $x(t) = (t - C)v_0 + pe_2$  with a suitable real constant  $C$ , see also Figure 1 below).

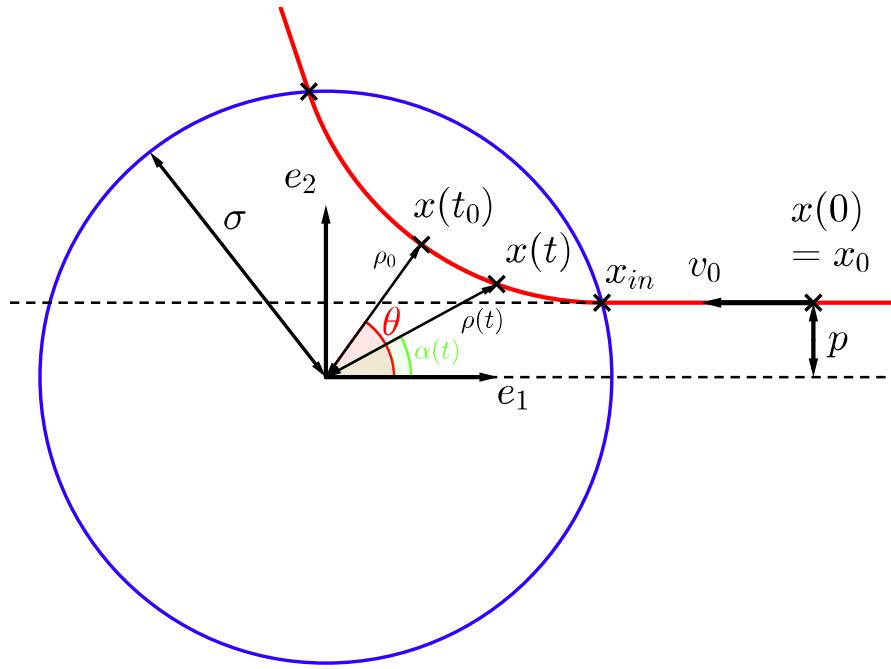


Figure 1: The movement of the particle through the support of the potential.

- (iv) Using the repulsive property of the potential, prove that the distance  $\rho$  between the particle and the origin has a single minimum  $\rho_0$ .

Suppose that  $t_0$  denotes the time at which the minimum is reached. Consider the line between the origin and  $x(t_0)$  (the so-called *apse line*), and define as  $\theta$  the angle between  $e_1$  and this line. The angle  $\theta$  is called the *deviation angle*.

- (v) Prove that the trajectory of  $x(t)$  is symmetric with respect to this minimum, i.e. we have for any  $t \in \mathbb{R}$

$$\rho(t_0 + t) = \rho(t_0 - t), \quad \alpha(t_0 + t) - \theta = -(\alpha(t_0 - t) - \theta). \quad (57)$$

- (vi) In the case of the potential with cut-off, prove that the conservation of the total energy and the angular momentum respectively write:

$$\begin{cases} \frac{1}{2}(\dot{\rho}^2 + \rho^2\dot{\alpha}^2) + U(\rho) = \frac{1}{2}V^2 + U(\sigma), \\ \rho^2\dot{\alpha} = pV, \end{cases} \quad (58)$$

where  $\dot{\rho}$  and  $\dot{\alpha}$  denote respectively the time derivatives of  $\rho$  and  $\alpha$ .

*Hint:* Consider the total energy and the angular momentum at the point  $x_{in}$ , where the particle enters the support of the potential (that is, the first time that  $|x(t)| = \sigma$ ).

- (vii) We denote as  $t_1$  the time such that  $x(t_1) = x_{in} = \sigma(\cos \alpha(t_1), \sin \alpha(t_1), 0)$ . Prove that

$$\theta = \int_{t_1}^{t_0} \dot{\alpha}(t) dt + \arcsin\left(\frac{p}{\sigma}\right). \quad (59)$$

- (viii) Prove the following identity:

$$\int_{t_1}^{t_0} \dot{\alpha}(t) dt = \frac{pV}{\sqrt{2}} \int_{\rho_0}^{\sigma} \frac{1}{w^2 \sqrt{\frac{V^2}{2} \left(1 - \frac{p^2}{w^2}\right) - U(w) + U(\sigma)}} dw. \quad (60)$$

*Hint:* Use the conservation laws (58) to find an expression for  $\dot{\rho}$  and  $\dot{\alpha}$  in terms of  $\rho$  only, write  $\dot{\alpha} = \frac{\dot{\alpha}}{\dot{\rho}}\dot{\rho}$ , substitute  $\frac{\dot{\alpha}}{\dot{\rho}}$  with a function of  $\rho$  only, integrate in time and change variables as  $\rho(t) = w$ .

- (ix) Find an equation satisfied by the minimal distance  $\rho_0$ . Up to assume that we can solve this equation, deduce an explicit expression of  $\theta$  (the expression (60) is of course not explicit, since it relies on determining the quantity  $\dot{\alpha}$ ).

Consider now  $U(\rho) = k\rho^{1-n}$  in its support. The explicit expression of  $\theta$  reads:

$$\theta = \frac{pV}{\sqrt{2}} \int_{\rho_0}^{\sigma} \frac{1}{w^2 \sqrt{\frac{V^2}{2} \left(1 - \frac{p^2}{w^2}\right) - \frac{k}{w^{n-1}} + \frac{k}{\sigma^{n-1}}}} dw + \arcsin\left(\frac{p}{\sigma}\right). \quad (61)$$

- (x) Prove that, thanks to a change of variables, the deviation angle  $\theta$  can be written as:

$$\theta = \int_{\lambda}^{\bar{x}} \frac{1}{\sqrt{1 - x^2 - \left(\frac{x}{b}\right)^{n-1}}} dx + \arcsin\left(\frac{p}{\sigma}\right), \quad (62)$$

with

$$\lambda = \frac{p}{\sigma} \sqrt{1 + \frac{2k}{V^2 \sigma^{n-1}}}, \quad b = p \left(\frac{V^2}{2k} + \frac{k}{\sigma^{n-1}}\right)^{\frac{1}{n-1}}, \quad (63)$$

and  $\bar{x}$  solving the equation  $1 - \bar{x}^2 - \left(\frac{\bar{x}}{b}\right)^{n-1} = 0$ .

- (xi) Finally consider the limit  $\sigma \rightarrow +\infty$  (which corresponds to relaxing the cut-off on the support of the potential). Recall that the collision kernel is written as

$$B(\theta, V) = V p(\theta) \partial_\theta p(\theta). \quad (64)$$

Prove that in the case of the inverse power law potential  $U(\rho) = k\rho^{1-n}$  **without cut-off**, the collision kernel has the form:

$$B(\theta, V) = V^\gamma b(\theta), \quad (65)$$

with  $\gamma = \frac{n-5}{n-1}$ , and where  $b$  is seen as a function of  $\theta$  through (62).

*Proof.* We start from (i). Given that the force can be explicitly written as  $F(x) = -U'(|x|) \frac{x}{|x|}$ , it is parallel to the vector  $x(t)$  for every time. Therefore from general properties of the vector product we get

$$\partial_t L(t) = (\partial_t x(t)) \wedge v(t) + x(t) \wedge (\partial_t v(t)) = v(t) \wedge v(t) + x(t) \wedge F(x(t)) = 0, \quad (66)$$

and the angular momentum is conserved. Now, in general we have that  $a \wedge b$  is both orthogonal to  $a$  and  $b$ , so if  $L(t)$  is constant, this means that the plain on which the dynamics happens is fixed as the orthogonal plane to  $L(0)$ .

To prove (ii) we differentiate  $\mathcal{E}_{tot}(t)$  to get

$$\partial_t \mathcal{E}_{tot}(t) = v(t) \cdot \partial_t v(t) + F(x(t)) \cdot v(t) = 0 \quad (67)$$

To prove (iii), in analogy to the previous exercise we define the following vectors:

$$e_r(\alpha) := \begin{pmatrix} \cos \alpha \\ \sin \alpha \\ 0 \end{pmatrix}, \quad e_\alpha(\alpha) := \begin{pmatrix} -\sin \alpha \\ \cos \alpha \\ 0 \end{pmatrix}. \quad (68)$$

Clearly  $e_r \cdot e_\alpha = 0$ ,  $\partial_\alpha e_r = e_\alpha$  and  $\partial_\alpha e_\alpha = -e_r$ . Furthermore we have  $x(t) = \rho(t) e_r(\alpha(t))$ , and therefore, given that  $v(t) = \partial_t x(t)$ , the polar decomposition of  $v(t)$  is given as

$$v(t) = \dot{\rho}(t) e_r(\alpha(t)) + \rho(t) \dot{\alpha}(t) e_\alpha(\alpha(t)). \quad (69)$$

From this it is easy to see that  $|v(t)|^2 = |\dot{\rho}(t)|^2 + |\rho(t)|^2 |\dot{\alpha}(t)|^2$ . As a consequence the energy can be written as

$$\mathcal{E}_{tot}(t) = \frac{1}{2} |\dot{\rho}(t)|^2 + \frac{1}{2} |\rho(t)|^2 |\dot{\alpha}(t)|^2 + U(\rho(t)) \quad (70)$$

To solve (iv) we can now write the derivative of  $v$  as

$$\dot{v}(t) = \ddot{\rho}(t) e_r(\alpha(t)) + 2\dot{\rho}(t) \dot{\alpha}(t) e_\alpha(\alpha(t)) \quad (71)$$

$$+ \rho(t) \ddot{\alpha}(t) e_\alpha(\alpha(t)) - \rho(t) (\dot{\alpha}(t))^2 e_r(\alpha(t)). \quad (72)$$

Now, we can also write the force term as

$$F(x(t)) = -U'(\rho(t)) e_r(\alpha(t)), \quad (73)$$

which means we can rewrite (54) as

$$\begin{cases} \ddot{\rho} - \rho \dot{\alpha}^2 = -U'(\rho), \\ 2\dot{\rho} \dot{\alpha} + \rho \ddot{\alpha} = 0. \end{cases} \quad (74)$$

Given that the second equation can be written as  $\partial_t(\rho^2 \dot{\alpha}) = 0$ , this means that  $\dot{\alpha}(t) = \frac{C}{\rho^2}$  for a suitable constant  $C$ . We substitute this information in the first term in (74) to get

$$\begin{cases} \ddot{\rho} = \frac{C^2}{\rho^3} - U'(\rho), \\ \dot{\alpha} = \frac{C}{\rho^2}. \end{cases} \quad (75)$$

Notice now that if we consider the second derivative of the second component of  $x$  we get

$$\ddot{x}_2(t) = \left( \ddot{\rho}(t) - \rho(t)(\dot{\alpha}(t))^2 \right) \sin \alpha(t) + (2\dot{\rho}(t)\dot{\alpha}(t) + \rho(t)\ddot{\alpha}(t)) \cos \alpha(t) \quad (76)$$

$$= \left( \ddot{\rho}(t) - \rho(t)(\dot{\alpha}(t))^2 \right) \sin \alpha(t) = -U'(\rho(t)) \sin \alpha(t) \quad (77)$$

$$= |U'(\rho(t))| \sin \alpha(t), \quad (78)$$

where in the last equality we used the fact that  $U$  is decreasing.

We now show that if  $x_2(0) > 0$  and  $\dot{x}_2(0) = 0$  (which is our case), then  $\rho$  can never vanish. To do so we will show something stronger, that is that  $x_2$  can only increase. Assume for example that there exists a time  $\tau_0 > 0$  such that  $x_2(\tau_0) < x_2(0)$ . By continuity of  $x_2$  and up to choosing a different (smaller) value of  $\tau_0$ , we can assume that  $x_2(s) > 0$  for any  $s \in [0, \tau_0]$ . The Rolle's theorem implies now that there exists a time  $\tau_1 \in (0, \tau_0)$  such that  $\dot{x}_2(\tau_1) < 0$ . Given that  $\dot{x}_2(0) = 0$  again by assumption, we get that applying Rolle's theorem once more, there exists a value  $\tau_2 \in (0, \tau_1)$  such that  $\ddot{x}_2(\tau_2) < 0$ . From (76) we get that  $\sin \alpha(\tau_2) < 0$  which implies that  $x_2(\tau_2) < 0$ , which is a contradiction. Therefore  $x_2(\tau) \geq x_2(0)$  for any  $\tau \geq 0$ .

This last fact with (75) implies that  $\ddot{\rho} > 0$  always. This implies that if a zero for  $\dot{\rho}$  (and therefore a minimum for  $\rho$ ) exists, it must be unique. We now show that  $\rho$  has a minimum. Indeed, suppose that there exists a radius  $R$  such that for any  $t > 0$  we have  $\rho(t) \leq R$ . We then get

$$\rho(t) = \rho(0) + t\dot{\rho}(0) + \int_0^t (t-s) \ddot{\rho}(s) ds \geq \rho(0) + t\dot{\rho}(0) + \int_0^t (t-s) \frac{C}{R^3} ds \quad (79)$$

$$= \rho(0) + t\dot{\rho}(0) + \frac{Ct^2}{2R^3}. \quad (80)$$

This implies that for  $t$  large enough we have  $\rho > R$ , which is a contradiction and proves that there exists a time  $\tau > 0$  such that  $\rho(\tau) > \rho(0)$ . Given that initially  $\dot{\rho}(0) < 0$ , this implies that there exists a minimum point for  $\rho$ .

Now, as hinted in the text, let's denote with  $t_0$  the time such that  $\dot{\rho}(t_0) = 0$ . To solve (v) now, notice that both  $\rho(t_0 + t)$  and  $\rho(t_0 - t)$  solve the problem

$$\begin{cases} \ddot{\gamma} = \frac{C^2}{\gamma^3} - U'(\gamma), \\ \gamma(0) = \rho(t_0), \\ \dot{\gamma}(0) = 0, \end{cases} \quad (81)$$

therefore  $\rho(t_0 + t) = \rho(t_0 - t)$ .

Now, define as in the text  $\theta = \alpha(t_0)$ ; we have that  $\dot{\alpha} = \frac{C}{\rho^2}$ , so we get

$$\alpha(t_0 + t) - \theta = \int_0^t \partial_s \alpha(t_0 + s) ds = \int_0^t \frac{C}{(\rho(t_0 + s))^2} ds = \int_0^t \frac{C}{(\rho(t_0 - s))^2} ds \quad (82)$$

$$= - \int_0^t \partial_s \alpha(t_0 - t) ds = - (\alpha(t_0 - t) - \theta). \quad (83)$$

To solve (vi) we get that

$$x(t) \wedge v(t) = \begin{pmatrix} 0 \\ 0 \\ \rho(t)^2 \dot{\alpha}(t) \end{pmatrix}. \quad (84)$$

Moreover at initial time we have that the angular momentum is given as

$$x_0 \wedge v_0 = ((C - t)v_0 + pe_2) \wedge (-Ve_1) = pV. \quad (85)$$

Together with conservation of the energy we obtain (58).

To solve (vii) it is enough to observe that by definition  $\theta = \alpha(t_0)$  and that  $\alpha(t_1) = \arcsin\left(\frac{x(t_1) \cdot e_2}{|x(t_1)|}\right) = \arcsin\left(\frac{p}{\sigma}\right)$ , and therefore

$$\theta = \alpha(t_1) = \int_{t_1}^{t_0} \dot{\alpha}(t) dt + \alpha(t_1) = \int_{t_1}^{t_0} \dot{\alpha}(t) dt + \arcsin\left(\frac{p}{\sigma}\right). \quad (86)$$

To prove (viii) we get that from the conservation of momentum we get  $\dot{\alpha} = \frac{pV}{\rho^2}$ . Substituting this in the equation for the conservation of the energy we get

$$|\dot{\rho}| = \sqrt{2 \left[ \frac{1}{2} V^2 + U(\sigma) - \frac{p^2 V^2}{2 \rho^2} - U(\rho) \right]} \quad (87)$$

$$= \sqrt{2} \sqrt{\frac{V^2}{2} \left( 1 - \frac{p^2}{\rho^2} \right) - U(\rho) + U(\sigma)}. \quad (88)$$

As a consequence we now get

$$\int_{t_1}^{t_0} \dot{\alpha}(t) dt = \int_{t_1}^{t_0} \frac{pV}{(\rho(t))^2} dt \quad (89)$$

$$= \int_{t_1}^{t_0} \frac{pV}{(\rho(t))^2} \frac{1}{\sqrt{\frac{V^2}{2} \left( 1 - \frac{p^2}{(\rho(t))^2} \right) - U(\rho(t)) + U(\sigma)}} |\dot{\rho}(t)| dt \quad (90)$$

$$= \frac{pV}{\sqrt{2}} \int_{\rho_0}^{\sigma} \frac{1}{w^2 \sqrt{\frac{V^2}{2} \left( 1 - \frac{p^2}{w^2} \right) - U(w) + U(\sigma)}} dw, \quad (91)$$

where in the last equality we used the fact that between  $t_1$  and  $t_0$  we have  $|\rho(t)| = -\rho(t)$  and used the change of variables  $\rho(t) = w$ .

To solve (ix) we notice that  $\dot{\rho}(t_0) = 0$  and 58 to get that  $\rho_0$  must solve

$$\frac{p^2 V^2}{2\rho_0^2} + U(\rho_0) = \frac{V^2}{2} + U(\sigma), \quad (92)$$

and therefore

$$\frac{V^2}{2} \left(1 - \frac{p^2}{\rho_0^2}\right) = U(\sigma) - U(\rho_0). \quad (93)$$

The formula for  $\theta$  is now given as

$$\theta = \frac{pV}{\sqrt{2}} \int_{\rho_0}^{\sigma} \frac{1}{w^2 \sqrt{\frac{V^2}{2} \left(1 - \frac{p^2}{w^2}\right) - U(w) + U(\sigma)}} dw + \arcsin\left(\frac{p}{\sigma}\right). \quad (94)$$

To prove (x) we first look for  $C, \gamma, b$  such that if  $x = \frac{\gamma}{w}$  we have

$$\frac{V^2}{2} \left(1 - \frac{p^2}{w^2}\right) - \frac{k}{w^{n-1}} + \frac{k}{\sigma^{n-1}} = C \left(1 - x^2 - \left(\frac{x}{b}\right)^{n-1}\right). \quad (95)$$

This implies

$$\begin{cases} C = \frac{V^2}{2} + \frac{k}{\sigma^{n-1}}, \\ C\gamma^2 = \frac{p^2 V^2}{2}, \\ C \left(\frac{\gamma}{b}\right)^{n-1} = k. \end{cases} \quad (96)$$

The solution of this system is given by  $C = \frac{V^2}{2} + \frac{k}{\sigma^{n-1}}$ ,  $\gamma = p \left(1 + \frac{2k}{V^2 \sigma^{n-1}}\right)^{-\frac{1}{2}}$  and  $b = \frac{pV}{\sqrt{2}k^{\frac{1}{n-1}}} \left(\frac{V^2}{2} + \frac{k}{\sigma^{n-1}}\right)^{-\frac{n-3}{2(n-1)}}.$

We now change variables in the integral for  $\theta$  to get

$$\frac{pV}{\sqrt{2}} \int_{\rho_0}^{\sigma} \frac{1}{w^2 \sqrt{\frac{V^2}{2} \left(1 - \frac{p^2}{w^2}\right) - \frac{k}{w^{n-1}} + \frac{k}{\sigma^{n-1}}}} dw = \quad (97)$$

$$= \int_{\frac{\gamma}{\sigma}}^{\frac{\gamma}{\rho_0}} \frac{1}{\sqrt{1 - x^2 - \left(\frac{x}{b}\right)^{n-1}}} dx. \quad (98)$$

If  $\bar{x} = \frac{\gamma}{\rho_0}$  the equation for  $\bar{x}$  comes from the equation for  $\rho_0$ .

Finally, to prove (xi) we get that, after performing the limit  $\sigma \rightarrow \infty$ ,  $b$  and  $\theta$  solve

$$\theta = \int_0^{\bar{x}} \frac{1}{\sqrt{1 - x^2 - \left(\frac{x}{b}\right)^{n-1}}} dx \quad (99)$$

where now  $\bar{x}$  solves

$$1 - \bar{x}^2 - \left(\frac{\bar{x}}{b}\right)^{n-1} = 0, \quad (100)$$

and where  $\bar{b} = p \left( \frac{V^2}{2k} \right)^{\frac{1}{n-1}}$ ; as a consequence,  $p$  as function of  $\theta$  can be seen as  $p(\theta) = \left( \frac{V^2}{2k} \right)^{-\frac{1}{n-1}} \bar{b}(\theta)$ . This allows us to conclude that

$$B(\theta, V) = V p(\theta) \partial_\theta p(\theta) = V \left( \frac{V^2}{2k} \right)^{-\frac{2}{n-1}} \bar{b}(\theta) \partial_\theta \bar{b}(\theta) = V^{\frac{n-5}{n-1}} B(\theta), \quad (101)$$

with a suitable  $B(\theta)$ .

□