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Exercise 1

Let f : R* — R, be a regular enough function, decaying sufficiently fast at infinity. Prove
that the following statements are equivalent:

) [ QU pos fav =0,
(i) log f is a collision invariant;

(iii) f is a Maxwellian distribution, i.e. there exist p € R, # > 0 and u € R? such that

'U—'U42
fw) = ﬁe‘l % for all v e R3;
wh) 2

(iv) Q(f, f) =

Proof. First of all notice that (ii) <= (ii7). From the characterization we gave last time
of a collision invariant we have that log f (v) = a|v| + b- v + ¢ with a,c € R, b € R3. This
implies that

f (U) _ ea\v\2+b-v+c‘ (1)
Given that f is decaying at infinity we get a = — |a|. Given that we can now write
2 2 A U
al]+b-v+ec=—lal|v]"+b-v+c=—]la v—mb —i—m—i—c (2)
! BN RU :
If we define 6 := A U= 3 ‘b and p : (W) laT 7% we can clearly see that f is a

Maxwellian distribution. The viceversa comes easily from a similar argument.
We now prove that (i) = (ii) = (iv) = (i) to conclude.

To prove (i) = (ii) recall that we saw in class that we can rewrite Q (f, f) as

| @unozsan - ®

__2 I'Js
— JRszs 5 (f'fe— [ 1 log<ff*> (v — vy, w) dw dv du, (4)
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Given that ff.B (v —vs,w) = 0 and that the function (A —1)log(A) =0, Q(f,f) =0
implies that ffy (J;f: — 1) og ) — Uy, w) = 0. Given that ff.B (v — v4,w) >0




for any w # 0 we get that FFe — 1 almost everywhere. This implies that log f is collision
invariant and therefore (ii).

Using the same expression for @ (f, f), if log f is collision invariant we have ]}/ ij‘ =1 and
therefore @ (f, f) = 0. This proves (ii) = (iv).

Finally (iv) = (i) is trivial, which concludes the proof of the exercise.

Exercise 2

Let v, v, € R3, and w € S2. In the lecture we defined the post-collisional velocities (v, v%)
associated to the pair of pre-collisional velocities (v, vy) with the angular parameter w as:

{v’zv(vv*)'ww7 (6)

Vo = v + (V—0s) W w.

We denote as (v/,v}) (w) the pair of post-collisional velocities defined by (6). In the liter-
ature, one may find another parametrization for the post-collisional velocities, called the
o-representation, defined for any o € S? as

o = v+2v* + \U—Zv*\ o, .
no vtve _ Ju—vs (7)
Vy = —5 5 0.

We denote as (v”,v) (o) the pair of post-collisional velocities defined by (7).

(i) Prove that the two parametrizations are equivalent, i.e. that for any w € S?, there
exists a unique parameter o € S? such that (v',v}) (w) = (v",v%) (o).

Prove also that for any o € S? there exists a parameter w such that (v/,v}) (w) =
(v",vY) (o). Is this choice of w unique? If not, how many possibilities are there for
w for any given o?

(ii) Represent on a picture, for a given pair of pre-collisional velocities (v,v,) € RS,
v # vy, and a given angular parameter w € S?, the associated pair of post-collisional
velocities (v/,v}) (w). Represent also the vector o associated to w.

(iii) We have seen in the lecture that the collision kernel for the hard sphere model is
given by [(v — v4) - wl, that is the collision term of the Boltzmann equation writes:

QUA = ||| lto= vl (7 = F1) der dow, 0

Prove that in the o-representation the hard sphere collision kernel is given by
|v — vy, Le.

U*| "
aun- [ [ P55 e ra) o a, o)
(where f” = f (V") and fI = f (vY)).



Proof. We first give some general properties of (6) and (7). Suppose first that we have
(v, vh) (w) = (¢, v)) (W) for all v,v, € R3. From the fact that v (w) = v’ (w') we get
immediately that (v —vs) - w w = (v —vy) - W . This implies first that w and W’ are
colinear, and subsequently that are equal up to a sign. Viceversa, the w-parametrizations

associated to the vectors w,—w € S? coincide, i.e. (v,v))(—~w) = (v',v}) (w). Finally,
Ul —Ux

given that w = w can always be identified up to a sign, given the transformation.

’ )
|”*_“*|

Suppose now that (v”,v%) (o) = (v",vY) (¢') for all v, v, € R3. From the fact that v" (o) —
v —vf

v (o) = 0" (/) — vl (¢’) we get that o = ¢’. Moreover o = therefore given the

transformation we can always uniquely identify o.

[v—vs]’

We get now to point (i). Let w € S? be fixed. Then from the properties of above the o
associated to the transformation that sends v,v, in v, v} identifies o uniquely. On the
other hand to each o we have two corresponding values of w identified, equal in direction
but opposite in sign.

Regarding point (iii), denote as v’ (w,v,vy) and v} (w, v, vy4) the vectors defined through
(6), where we made explicit the dependence on v and vy. First of all we get that

v (w, v (w,v,04) , U (w,0,05)) =V (w,0,04) — (Vv (w,v,04) =V (w,0,04)) - ww (10)

=0 — (V=) Ww— (V=0 —2(V—04) WW) Ww =, (11)

U (w, 0" (w,0,04) , 0 (W, 0,04)) = 0, (w,v,04) + (V' (w,0,04) =V (w,0,04)) - ww (12)

=V F(V—0s) Ww+ (V=0 —2(V—0y) WW) W W = V. (13)

Given that the change of variable associated to the transformation v = v (w,v,vy),
vl = v}, (w,v,v4) is of the form dv'dv), = dvdv,

As a consequence we can rewrite Q (f, f) as
QU0 = [ [ 1w=vwl (£ - 11) dw do (14)

We now want to perform the change of variables o — w. Indeed, imposing that v (w, v, vy) =
V" (0,v,v4), we can easily deduce that

(15)

Recall now that for a generic function f e L! (SQ), the integral is defined in such a way
that for any bijective map & € C* (U; SQ) with U € R? (a parametrization), we get

f f (o) do = f £ (€ (@) Je () da, (16)
S2 U

with

T (a) = e [ V2 (2) (72 ()" (1

We consider now the parametrization given by the composition of the change of variables
w — o and the parametrization give in polar coordinates. In other words, with a little



abuse of notation we define

o:{weS?|wy>0} —
w [

w:[-m ] x[0,5] —
0

S2

—V+2V wuw,

{weS? ws >0}

(cosfcos (p),cosfsin (p),sind),

with V e §2.

For reason that will become clear later, we introduce the vectors e, (¢, 0), ey (¢, 0) and
e, () defined as

cos 0 cos (p)
er(p,0) == | cosfsin(yp) |, (19)
sin #
—sin 6 cos (p)
eo (¢, 0) :=0p ey (p,0) = | — sinﬁs;n () |, (20)
1 ~sin (o)
ep (p) 1= —0per (p,0) = | cos(p) | (21)
0
Given that
ler (£, 0)] = lea (9, 0)] = le, (0)] = 1, (22)
Er (()07 0) *€p (()07 0) = €r (907 0) "€y (SO) = €p (907 9) "€y ((P) = 07 (23)

the set {e, (¢,0),eg (,0), e, (p)} is a basis for R3. Moreover, by definition we have that
w (p,0) = er (¢,0).

We then calculate the Jacobian J,o, as

o (:0) = 7068 [V, (00 (6,0)) (V0 0 000 (2,0)) 21

= \/det |(V00) (9,0) (Vo) (@ (,0)) [(Vuo0) (w (2, 00)]" [(Vip ) (2, 0)] |-

(25)
It is easy to calculate the matrices (V,gw) (¢,0) and (V,0) (w) as
cosf e, (¢)T
Vow) (p,0) = ¢ , 26
(V) (9,0) ( O (26)
(Vwo) (w) = 2|V Xw| + 2V -wid, (27)

where (|V){w|); ) := Vjwi (and in particular [V Xwlv = w-v V for any v € R?). As a
consequence for any w € {w € S?| w3 > 0} we get

(Vuo) (@) [(Vuwo) @)]" = 4 ([V)w| + V- wid) (w)V] + V- wid) (28)
A IVXV] 4 V- wlVXw] + V- wlwXV] + (V-w)id] . (29)



Define now T (¢, 0) = (Vo) (w (¢,0)) [(Vwo) (w (¢, 0))]"; as a consequence we get

Vgow) (,0) (w (,0) [(Vwo) (w (2, 0)]" [(Vpow) (,0)]" = (30)
— ( cos e‘p ) (¢,0) (cost ey, (¢), ey (¢, 0)) (31)
_ < COSG (p,0) e, (p) cosb e, (@) T (p,0)eq(p,0) > (32)

cosf 69 (¢, 0) ey () eg (¢, 0) - T (p,0) eq (p,0) '

Given that w (¢, 0) = e, (¢, 0) and from the fact that {e, (¢,0),eg (¢,0) e, (¢)} is a basis
we have that for any v, w € spang {eg (¢,0) e, (¢)}

v VX w (i, 0) [w = w-[V){w(p,0) v =0. (33)

We can finally get

eo ()T (p,0) e, (9) = 4| (V- ep () + (V- e (,0)] (34)
ep (@) - T'(p,0) e (9,0) = 4(V - e () (V- €9 (9,0)) (35)
eo (9,0) - T (p,0) e, (0) =4 (V- e () (V- €9 (9,0)) (36)
eo (¢,0) T (p,0)eq (p,0) = [(V ceq (9,0)" + (V- er (i, 9))2] - (37)
From the fact that
(ep () - T (0, 0) ep () (€n (0,0) - T (,0) eq (¢, 0)) = (38)
=16 [(V'ego( N2 (V-9 (,0)" + (V- e, (9))* (V - e (#,6))° (39)
+(V-eq(9,0)* (V- e (,0)) + (V- e (%9))4] (40)
—16[ (V- €0 (9 (V-0 (2,0)) + [V (V- e (,0))°] (41)
=16 [(V e (02 (V- 0 (,0)) + (V- e (,6))°] (42)
(ep () - T (0, 0) €9 (0,0)) (e (0, 0) - T (9,0) e () = (43)
= 16(V - ey ())° (V- €9 (,0))*, (44)
we can explicitly calculate the Jacobian as
Joows (,0) = /16 (cos0)* (V -, (9,0))* = dcos§ |V - e, (1,0) (45)
=4cosf |V -w(p,0). (46)
It is now an easy computation to notice that J, (¢, 0) = cosd, and therefore get
f o) do = f_ f f (o ) Joow (0,0) dB dip (47)

[ [aveeoreoemneaveg

f 41V -] f (0 (@) dw. (49)
{weS?| w3>0}



We now apply this to our problem. Using that (v”,v) (o (w)) = (v/,v}) (w) we can apply
the formula above to get

[e=o-al (s = gryao ool [ |20l (1= 7 de 0
V — Uy rer

7 ‘v - U*‘ LweSQI w3>0} ’U — U*’ 'W‘ (f f* ff*) o (51)

_ |U;U*|L2 (f” Z—ff*)dO', (52)

which implies the exercise.

Exercise 3

In this exercise we will study the explicit kernel of a power law potential.

In order to do so, we first introduce some basic properties of motion of a particle in R3.
Let U : Ry — [0,+00) a radial potential, and the force F' : R® — R associated to it
defined as

F(z) := =V (U (|z])) .- (53)

A particle submitted to F satisfies Newton’s equation, in the sense that its position and
velocity (x (t),v (t)) solve

(54)

Once fixed the initial condition (x (0),v (0)) = (x0,v0) we know the solution to (54) is
unique.

(i) Prove that the angular momentum! L (t) := x (t) A v (t) is conserved. Prove that
the movement of the particle lies in a plane.

Hint: For two generic vectors u, w € R® what geometical property do u, w and
u A w fulfill?

(ii) Let & (t) and &, (t) be respectively the kinetic and potential energy of the particle
at time t, i.e.

E(t) =5 (B, & (t) = U (= (1)])- (56)

Show that the total energy of the system & (t) = & () +&, (t) is conserved in time
if (z(t),v(t)) is a solution of (54).

1Recall that given two vectors u,w € R® with v A w we denote the vector product between v and w,

which is defined as
U2W3 — U3W2
U Nw = Uswil — U1W3 . (55)

U1W2 — U2W1



(iii) From point (i) the motion of the particle lays in the plain spanned by z¢ and vy. Con-
sider the system of coordinates so that the component along the third component is
zero. Furthermore on the plain of motion consider polar coordinates, so that any vec-
tor & can be represented as x = (pcos a, psin«, 0) in a suitable basis. Let p (t), « (t)
the polar coordinates associated to x (t) (i.e. z (t) = (p (t)cosa (t), p (t)sina (t),0)).
Find the expression of & (¢) and & (t) in terms of p (t), a(t).

Assume now that U is compactly supported, that is U (p) = 0 for p > o for some real
o > 0 and decreasing in p. Let us assume in addition that |zg| > o, v9 = —Ve; with
V >0.

For small times the motion of the particle is free (as long as we are outside of the support of
the potential v (¢) is constant); we assume that initially the particle approaches the origin
with impact parameter p € (0, o), where the impact parameter is defined as p = zp-e2 (i.e.,
the trajectory can be written for small times as z (t) = (t — C)vg + pes with a suitable
real constant C, see also Figure 1 below).

Figure 1: The movement of the particle through the support of the potential.

(iv) Using the repulsive property of the potential, prove that the distance p between the
particle and the origin has a single minimum py.

Suppose that ¢ty denotes the time at which the minimum is reached. Consider the line
between the origin and z (¢9) (the so-called apse line), and define as € the angle between
e1 and this line. The angle 0 is called the deviation angle.



(v) Prove that the trajectory of z (¢) is symmetric with respect to this minimum, i.e.
we have for any t € R

plto+1t)=plto—t), alto+t)—0=—(alto—t)—0).  (57)

(vi) In the case of the potential with cut-off, prove that the conservation of the total
energy and the angular momentum respectively write:

(PP +p%2) +U (p) = 5V2+ U (0), .
2 V. ( )
pra=Dpv,
where p and & denote respectively the time derivatives of p and a.

Hint: Consider the total energy and the angular momentum at the point x;,,
where the particle enters the support of the potential (that is, the first time that

[z ()] = o).

(vii) We denote as t; the time such that z (1) = zi, = o (cosa (t1),sina (t1),0). Prove
that

0 = Jto & (t) dt + arcsin (g) . (59)

1

(viii) Prove the following identity:

dw. (60)

L. D=7 Lo \/V2 1_— —U(w)+U(U)

Hint: Use the conservation laws (58) to find an expression for p and & in terms of

p only, write & = % p, substitute % with a function of p only, integrate in time and
change variables as p (t) = w.

(ix) Find an equation satisfied by the minimal distance pg. Up to assume that we can
solve this equation, deduce an explicit expression of 6 (the expression (60) is of
course not explicit, since it relies on determining the quantity ¢).

Consider now U (p) = kp'~™ in its support. The explicit expression of # reads:

dw + arcsin (g) . (61)

wn—1 on—1

Lo \/V2 _ﬁ _ _k k

(x) Prove that, thanks to a change of variables, the deviation angle 6 can be written as:

(D
f o d:v + arcsin (J) , (62)
Vi-e - (5)"
with
1
P 2k V2 E \" 1
A= 1+——— b= — 63
o +V20”_1’ <2k T ’ (63)
and Z solving the equation 1 — 72 — (%)n '—o.



(xi) Finally consider the limit ¢ — 400 (which corresponds to relaxing the cut-off on
the support of the potential). Recall that the collision kernel is written as

B(0,V)=Vp(6)ep (0)- (64)
Prove that in the case of the inverse power law potential U (p) = kp'~" without
cut-off, the collision kernel has the form:
B(6,V)=V"b(0), (65)
with v = 2=2 and where b is seen as a function of § through (62).

Proof. We start from (i). Given that the force can be explicitly written as F'(z) =

=U'(|z]) ﬁ, it is parallel to the vector z (t) for every time. Therefore from general prop-

erties of the vector product we get
L (t) = (O (t)) nv(t)+z(t) A (Gv(t) =v(t) Av(t)+x(t) A F(z(t)) =0, (66)

and the angular momentum is conserved. Now, in general we have that a A b is both
orthogonal to a and b, so if L (t) is constant, this means that the plain on which the
dynamics happens is fixed as the orthogonal plane to L (0).

To prove (ii) we differentiate Eior (t) to get

OuEiot () = v () - O (t) + F (x () - v (t) = 0 (67)

To prove (iii), in analogy to the previous exercise we define the following vectors:

cos o —sina
er(a) == sina |, eq (@) = cosa |. (68)
0 0
Clearly e, e, = 0, dper = eq and 0peq = —e,. Furthermore we have x (t) = p (t) e, (a (t)),
and therefore, given that v (¢) = d.x (t), the polar decomposition of v (¢) is given as
0 () = p(t)er (@ (8) +p (1) (B ea (1) (69)

From this it is easy to see that |v (£)|* = [ (£)]* + | (t)]* |& (£)|*. As a consequence the
energy can be written as

o (1) = 3 IO + 5 1o (P16 OF + U (p (1) (70)

To solve (iv) we can now write the derivative of v as

0(t) = p(t)er(a(t)) +2p(t) (t) ea (a(t)) (71)
+p (1) (1) ea(a(t) —p(t) (@) er (alt). (72)

Now, we can also write the force term as

F(a(t) ==U'(p(t) er ( (1)), (73)



which means we can rewrite (54) as

.. -2 /
p—pac=-=U (p),
{ 2pa+ pa = 0. (74)

Given that the second equation can be written as d; (p?c) = 0, this means that ¢ (t) = <
for a suitable constant C'. We substitute this information in the first term in (74) to get

s 2 /
p= p3 -U (,0) )
. 75

Notice now that if we consider the second derivative of the second component of x we get
ia (t) = (1) = p () (&(1)*) sina (1) + (2p () 6 (1) + p (D) é () cosa () (76)

= (50 = (1) (& (1)) sinar (t) = U (p (1)) sinx (1 (77)
= U (p(t))|sina (), (78)

where in the last equality we used the fact that U is decreasing.

We now show that if 25 (0) > 0 and &2 (0) = 0 (which is our case), then p can never vanish.
To do so we will show something stronger, that is that x5 can only increase. Assume for
example that there exists a time 79 > 0 such that xo (79) < z2 (0). By continuity of x9
and up to choosing a different (smaller) value of 7, we can assume that x2 (s) > 0 for
any s € [0,7p]. The Rolle’s theorem implies now that there exists a time 71 € (0, 79) such
that 9 (71) < 0. Given that @9 (0) = 0 again by assumption, we get that applying Rolle’s
theorem once more, there exists a value 79 € (0,71) such that &5 (72) < 0. From (76) we
get that sin« (72) < 0 which implies that x3 (72) < 0, which is a contradiction. Therefore
29 (T) = 22 (0) for any 7 = 0.

This last fact with (75) implies that p > 0 always. This implies that if a zero for p (and
therefore a minimum for p) exists, it must be unique. We now show that p has a minimum.
Indeed, suppose that there exists a radius R such that for any ¢t > 0 we have p (t) < R.
We then get

t t

(t—s)ﬁ(s)ds?p(0)+tﬁ(0)+f (t—s) st (79)

plt) =)+t 0) + | =9 7

0
Ct?

=p(0) +1p(0) + 75

(80)

This implies that for ¢ large enough we have p > R, which is a contradiction and proves
that there exists a time 7 > 0 such that p (7) > p(0). Given that initially p (0) < 0, this
implies that there exists a minimum point for p.

Now, as hinted in the text, let’s denote with ¢y the time such that p (to) = 0. To solve (v)
now, notice that both p (o + t) and p (to — t) solve the problem

p (tO) ) (81)
0



therefore p (to +t) = p (to — t).

<
2

Now, define as in the text § = a (to); we have that & = 5

t t C t C
a(to—i-t)—G—Joﬁsa(to—i—s)dS—JMds-ﬁ]wds (82)
——J;]asoz(to—t)ds=—(oz(to—t)—e). (83)

To solve (vi) we get that

z(t) Av(t) = 0 . (84)

Moreover at initial time we have that the angular momentum is given as

zo Avg = ((C' —t)vog + pe2) A (=Ver) = pV. (85)

Together with conservation of the energy we obtain (58).

To solve (vii) it is enough to observe that by definition § = « (tp) and that «a(t;) =

arcsin ( ﬁg&;ﬁ) = arcsin (2), and therefore

to

0=a(t)= Lto a(t)dt+a(t)) = L ¢ (t) dt + arcsin (g) : (86)

1 1

To prove (viii) we get that from the conservation of momentum we get & = 22—2. Substi-
tuting this in the equation for the conservation of the energy we get

7= \/2 U - U] (s7)
V2 p2
:\/5\/2 <1_p2> —U(p) + U (o). (88)
As a consequence we now get
to ] B to pV
L OIS L (p (t))th (89)
f ° . Pl (90)

WW pj ) U (o) +U (o)

Lo WQ 1= 2) = U (w) +U (o)

where in the last equality we used the fact that between ¢ and ¢y we have |p (t)) = —p (¢)
and used the change of variables p (t) = w.

dw, (91)

11



To solve (ix) we notice that p (t9) = 0 and 58 to get that pp must solve
2v2 V2
B +U(po) = 5 + U (o), (92)
Po 2

and therefore
VZ 2
—(1-5) =0 - Up). (93)
2 05
The formula for 0 is now given as
V(e 1
0 = % f dw + arcsin (2> . (94)
2 2 o
o wz\/VQ (1 - %) — U (w) + U (o)
To prove (x) we first look for C,~,b such that if x = 2 we have
V2 p? k k 9 x\n—l1
This implies
V2 k
C = 7 j_ gn717
Cr? = BV (96)
o)y -
2 _1
The solution of this system is given by C' = VT + T, Y = p(l + #) 2 and
n—3
_ \4 V2 kE \ 201
b= ﬁiﬁ (7+0_n_1) .
We now change variables in the integral for 6 to get
V(e 1
% f dw = (97)
muty [ (1= 5) - g +
.
» 1
= J o -~ dx. (98)
a n—
Pyl (3)
Ifz = %0 the equation for T comes from the equation for pg.
Finally, to prove (xi) we get that, after performing the limit o — o0, b and 6 solve
- 1
o — J do (99)
R
where now T solves
(100)



1
and where b = p (‘;—;) "as a consequence, p as function of § can be seen as p(0) =

1
(‘2/73) "y (0). This allows us to conclude that

V2 = _ _ n—>5
B(6,V)=Vp(0)dgp(0) =V <2k‘> b(0) 0gb(0) = V1B (0), (101)

with a suitable B (0).

13



